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Abstract: With the widespread adoption of NIPT prenatal testing technology for assessing foetal
health, unhealthy foetuses can be detected more rapidly, thereby extending the therapeutic window.
However, NIPT can only guarantee its validity when performed under specific conditions. This paper
therefore commences by applying k-means clustering to relevant data using the Cox proportional
hazards model, thereby determining the optimal testing timeframe based on existing data. An error
analysis of various influencing factors revealed that height exhibits the lowest sensitivity. Considering
the differences between male and female chromosomes, this study constructed features from foetal
data and developed a neural network model based on a multi-layer perceptron (MLP) for training and
learning. This model achieved a sensitivity of 91%, specificity of 82%, and accuracy of 86%.

1. Introduction

Non-invasive prenatal testing (NIPT) [1] is a prenatal screening technique that analyses foetal
chromosomal abnormalities by collecting and examining foetal cell-free DNA fragments present in
the maternal bloodstream during pregnancy. This technology is primarily employed for the early
identification of common chromosomal aneuploidy disorders such as Down syndrome (Trisomy 21),
Edwards syndrome (Trisomy 18), and Patau syndrome (Trisomy 13). The accuracy of NIPT is highly
dependent on the concentration of foetal sex chromosomes (XY for male foetuses, XX for female
foetuses). Generally, testing can be conducted between 10 and 25 weeks of gestation. Results are
considered substantially reliable when the concentration of the male Y chromosome reaches or
exceeds 4% and the female X chromosome concentration is within normal limits.

In practice, the concentration of the male Y chromosome correlates closely with the gestational
age and the mother's Body Mass Index (BMI). To optimise detection outcomes, pregnant women are
typically grouped according to BMI, with optimal testing windows determined for each group. Given
individual variations in maternal age, BMI, and pregnancy status, a uniform testing strategy or single
empirical grouping may cause some women to miss the optimal treatment window, thereby increasing
potential health risks. Consequently, scientifically sound grouping and timing selection are crucial
for enhancing the accuracy and safety of NIPT [2][3].

2. Model Assumptions

Assuming that the concentration of foetal-derived cell-free DNA generally increases progressively
with gestational age, with inter-individual variation in the rate of increase but no decline during the
mid-to-late pregnancy period. Therefore, gestational age may be regarded as the primary temporal
driver of concentration variation.

Assuming that maternal physical indicators such as BMI, weight, and height significantly
influence the timing of concentration attainment. Higher BMI tends to delay concentration attainment,
with consistent overall trends despite individual variations in the magnitude of this effect.

Assuming that fluctuations in experimental conditions such as sequencing depth, alignment
coverage, and GC content may be regarded as systematic variations. These do not introduce
directional bias to the overall concentration metric. Consequently, modelling may incorporate quality
factors to correct for such variations.

Assuming that random errors during detection are independent of core variables such as gestational

Copyright © (2025) Francis Academic Press, UK 144 DOI: 10.25236/iwmecs.2025.017



age and BMI, and collectively follow a zero-mean disturbance distribution. This assumption ensures
residuals serve as a reasonable characterisation of uncertainty.

3. Model Formulation and Solution
3.1 Data Preprocessing

To ensure the representativeness of the samples and the comprehensiveness of the sample data, we
found that deleting data with GC content below 40% would result in significant loss of raw data,
potentially leading to model overfitting and compromising the model's statistical reliability. Therefore,
we only excluded data with GC content at or below 38%.

Additionally, gestational age was converted to a standardised week count expressed as a decimal.
The formula employed was: Gestational Age (weeks) = Integer Weeks + 7/Number of Days, thereby
completing the preliminary preprocessing.

In modelling and analysing non-invasive prenatal testing (NIPT) data, data quality directly impacts
model validity and the reliability of conclusions. Based on clinical practice and study requirements,
we defined three screening criteria to form a composite decision function: Let the sample's feature
vector be x = (g, Yy, ¢), where g denotes the detected gestational age, y represents the chromosomal
concentration, and ¢ indicates the GC content. Construct the screening function:

valid (x)=(10< g <25)A(y >4)A(0.4<C <0.6) Q)

The effective sample set is defined as:
D,.ig ={X € Dlvalid (x) =true} (2

We then proceed with sequence merging: for the raw dataset D, each record r contains the pregnant
woman code p(r) and the number of blood draws t(r). Records pertaining to the same pregnant woman
and the same blood draw are grouped together, denoted as:

G, ={reD|p(r)=p, t(r)=t} (3)

Here, p denotes the set of all pregnant women's codes, and T denotes the set of all blood sampling
instances.

Extract non-null ‘chromosomal aneuploidy’ results from the grouping (excluding invalid records)
to form a valid set:

A, ={a(r)|reGp,t,a(r)=null} 4)

The retention of each set is determined based on its frequency within the valid set, after which the
retained data undergoes cleansing. The results are shown in Figure 1.
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3.2 Spearman's Correlation Analysis
Compared to Pearson correlation, Spearman's rank correlation coefficient (py(s,t)) robustly
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measures the strength of this monotonic association without requiring linearity or homogeneity of
variance. Evidently, the relationship between Y chromosome concentration and gestational age or
BMI does not exhibit linear progression; hence we employ Spearman's rank correlation coefficient
[4].

The raw data for variable X and variable Y are each independently sorted in ascending order. The
smallest value is assigned rank 1, the second smallest rank 2, and so on. Where multiple values are
identical, the average rank of their positions is taken. Following this transformation, the ranks Rxi for
variable X and Ryi for variable Y are obtained. To prevent tied ranks, the following formula is
employed for calculation.

r,=——2L ' (5)

Where R, is the mean of variable X's level, R, is the mean of variable Y's level.

The Spearman heatmap obtained through the aforementioned calculations is shown in Figure 2.
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Fig. 2 Spearman Correlation Coefficient Heatmap

As can be observed from Figure 2, BMI exhibits a relatively strong correlation of 0.78 with Y
chromosome concentration, indicating a pronounced synchronous variation between maternal BMI
and foetal Y chromosome concentration in maternal blood. The correlation coefficient between
gestational age and Y chromosome concentration is 0.46. As gestational age increases, there is a
noticeable upward trend in foetal Y chromosome concentration in maternal blood. Furthermore, the
relationship between BMI and gestational age, as calculated through partial correlation, also
demonstrates an association. This aligns with the information provided in the title.

3.3 Cox Proportional Hazards Model

To investigate the relationship between the time at which male foetuses achieve the target Y
chromosome concentration (>4%) and multiple factors including BMI, height, weight, and age, we
defined the gestational week at which the Y chromosome concentration first reached or exceeded 4%
as the target attainment time. Using the ‘proportion of target attainments’ across all tests for that
individual as the attainment ratio, we derived the following formula.

T =min{t; v, (t;) > 0.04}
I = miizrinill(vi (t;)>0.04)

Where v,(t) denotes the concentration of Y at gestational week t for sample i;t; represents the

(6)

gestational week of the jth test, with a total of m, tests; T' indicates the earliest time to meet
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standards; r. € [0, 1] signifies the proportion of sample i meeting standards.

The time to achieve compliance in NIPT is influenced by multiple factors, including the mother's
physical constitution and obstetric history. Centred on BMI, additional features such as age, height,
weight, GC content, number of pregnancies, number of deliveries, number of blood draws for testing,
and chromosomal non-integer copy numbers are incorporated to form a feature vector. Random forest
regression is employed to determine the importance of each feature, enabling the selection of the top
key factors for subsequent clustering.

x, = (BMI,, Age,, Height, ,Weight,,GC,, PregCnt,, BirthCnt,,r,)",S
={BMI} uargmax > 4, ()
ACF,‘A‘:4 jeA
Where x denotes the multi-factor vector for sample i; F represents the complete set of
candidate features; ¢; indicates the importance of feature j as determined by the random forest; S

constitutes the feature subset used for grouping (comprising BMI and the top four features selected
by importance).

To eliminate the effects of dimensions and scales, each feature used for clustering is standardised
to a mean of zero and a unit variance. Subsequent clustering and distance measurement are then
performed within this space.

The Cox model is employed to model the hazard function for the occurrence of ‘achievement
events’:

h(t|x)=h, (t) exp(BBMI + B,Age+ S\Weight + 8,Height + Bnbd + S,ca)
Among these, h(t|x) denotes the hazard function at time T under covariate X; h,(t) represents

the baseline hazard function; g, signifies the covariate coefficient; nbd denotes the number of

blood draws tested; and ca indicates chromosomal aneuploidy.
The Cox model estimates parameters by maximising the likelihood function:

B exp(X; ;)
L(IB) - i:it!a_p‘!):ens Z exp(xj/ﬂ)

ieR()

(8)

The results of the Cox model are as Table 1:
Table 1. Cox Model Table

Variable Coef HR=exp (coef) p-value
S _Age 0.12 1.13 0.45
S_Height -0.08 0.92 0.62
S_Weight 0.05 1.05 0.78
S Number of blood tests conducted -0.21 0.81 0.09
S_Maternal BMI 0.18 1.20 0.12
S_Chromosomal aneuploidy 0.35 1.42 0.04

In Cox models, HR > 1 indicates that the variable increases the risk of meeting the target, i.e.,
earlier attainment; whereas HR < 1 signifies that the variable reduces the risk of meeting the target,
i.e., later attainment. A p-value less than 0.05 indicates a significant effect on either early or late
attainment. As shown in the figure, S_chromosome aneuploidy exhibits HR = 1.42 and p = 0.04,
significantly increasing the risk of achieving the target. Consequently, we exclude this indicator.
Regarding S_testing blood draw frequency: HR = 0.81, p = 0.09, which may delay target attainment
but fails to reach statistical significance. For model accuracy, we exclude this variable. S_maternal
BMI: HR = 1.20, p = 0.12, may promote earlier attainment but did not reach statistical significance.

By analysing the total squared error (SSE) corresponding to different cluster numbers (K) using
the CH-Index method and plotting a trend graph, we obtained the results shown in Figure 3:
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Fig. 3 SSE versus Number of Clusters Line Chart

After comprehensive analysis, we selected K=4 as the optimal number of clusters.
We employed K-means clustering. Within the standardised multifactorial space, K-means
minimised the sum of squares within clusters, yielding candidate multifactorial groupings dominated

by BMI.

min ¥ [z -c| (©)

{Cg’cg}gﬂ g=1ieCy
Here, cg denotes the sample set of the gth cluster; cg represents the corresponding cluster centre;
zi = (zij)j €s denotes the standardised feature vector of sample i. The resulting clustered data is as

Table 2:
Table 2. Final Cluster Centroid Results Table

Variable Cluster 1 | Cluseter 2 | Cluster 3 Cluster 4
S Age -0.3960 -0.0606 0.0738 1.5664
S Height 0.2970 0.5740 -1.2485 0.3806
S Weight 0.1547 2.5020 -1.1063 0.2539
S Maternal BMI -0.0054 2.7596 -0.5516 0.0649

Risk Function Construction:
R(t) =aP(y <0.04t)+ B(t—t,)

Through this function, we unify two risks that cannot be directly compared within a single
quantitative framework using weighting coefficients o and . The former represents the risk of
premature detection expressed as a probability cost, while the latter denotes the risk of overdetection
expressed as a time cost. Overall, the smaller the value of R(t), the lower the overall risk of conducting

detection at time t.

= = Premature detection risk |
- Post-detection risk
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Fig. 4 Detection Time Risk Analysis Chart

As shown in Figure 4, the optimal detection time point is 10.0 weeks, with a minimum risk value
of 1.885. The risk of premature detection at the optimal time point is 1.885, while the risk of delayed

detection at the optimal time point is 0.000.
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We have established an intra-group optimal timing as a fallback option. The recommended intra-
group timing is defined as the point where >95% of pregnant women meet the criteria. Based on the
scatter plot distribution generated by MATLAB, we can determine:

® Group 1{20.7, 34.5]

— —Group 2[27.9, 39.2)

® Group 3(28.5, 38.5)

24 |-|= =—Group 4[30.0, 45.7)

Time to achieve Y chromosome
ncentration target (weeks)

BMI

Fig. 5 Multifactorial BMI Grouping and Optimal Detection Timing

As shown in Figure 5, the intra-group recommended timing for the first group was 14.2 weeks, for
the second group 14.7 weeks, for the third group 15.8 weeks, and for the fourth group 17.9 weeks.
This indicates minimal deviation from our risk function-derived data, with only the first group
exhibiting a two-week discrepancy.

3.4 MLP Neural Network Model

Our study exclusively examines female foetal samples, with the objective of determining whether
any of chromosomes 13, 18, or 21 exhibit aneuploidy (abnormality). Neural networks are employed
for this prediction. The supervised labels are defined as yi & {0,1}, indicating whether the ith
sample is abnormal (1 = abnormal; 0 = normal). We stipulate that yi=1 {if ABi is non-empty or
positive}.

Let n denote the sample size, d the input feature dimension, and xi € R”d the feature vector for
the ith sample.

Our primary diagnostic metrics are Z13, Z18, Z21, and Z_X. Required sequencing quality
indicators include: N (total sequencing reads), map (proportion of reads aligned to the reference
genome), dup (proportion of duplicate reads), uniq (number of uniquely mapped reads), filt
(proportion of filtered reads), P (GC content), GC13, GC18, GC21. Clinically, these correspond to
the indicators BMI, gestational age (GA), age, and IVVF.

Feature construction in this paper primarily involves standardisation and the creation of derived
variables. First, the GC deviation is calculated using the following formula:

GC,,; =|GC13—P|+|GC18—P|+|GC21-P| (10)

Next, we seek efficiency:
eff, =unigx map (11)

Calculate the noise index:
noise; = &, (1—map) + a,dup + a.filt+a, (1 - uniq) (12)

Then proceed with read-out scaling:
logN; =log(N; +1) (13)

Final input vector: xi=[Z13, Z18, 721, Z X, GCdev, logN, eff, noise, BMI, GA, Age, IVF
pregnancy method]. To enable more precise analysis, we standardised continuous variables using Z-
scores.
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The neural network we constructed operates as follows: first, forward propagation occurs, with the
first hidden layer formula being:

h,=ReLU(wx +b,) (14)
The formula for the second hidden layer is:
h, =ReLU(w,h, +b,) (15)
The formula for the output layer is:
p=o(wh, +b;) (16)

Here, w,w,,w, isthe weight matrix, bi, bz, bs are the bias terms, ReLU is the activation function,
and ¢ denotes the sigmoid function.

The expression for the ReL U activation function is ReLU(x) = max(0, x), while the expression for
the sigmoid function is [5]:
1
C14e

(17)

o(x)
The model's loss function is:

L= _Z[lei Iog( P; ) +Wo (1_ P ):| + /12”""”2 (18)

Here, yi denotes the true label, pi represents the predicted output, and A is the regularisation term,
whose purpose is to prevent overfitting. The model results are shown in Figure 6:
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Fig. 6 Loss Function Variation Curve

As shown in Figure 6, the loss value is somewhat high, indicating suboptimal learning performance
of the model. Here, we introduce Bayesian optimisation for analysis. Within neural networks,
Bayesian optimisation (BO) serves as an efficient black-box optimisation method. Its core objective
is to leverage historical experimental data through Bayes' theorem to precisely guide parameter
selection for subsequent experiments in scenarios where evaluation costs are prohibitively high,
ultimately enabling rapid identification of the global optimum. It is primarily employed to tackle
challenges such as hyperparameter optimisation (HPO) and neural architecture search (NAS) in
neural networks, demonstrating significant superiority over traditional grid search and random search
approaches. Bayesian optimisation comprises two core components: the probabilistic surrogate model
and the acquisition function. The former primarily utilises Gaussian processes as surrogate models to
approximate the objective function:

f(x) ~ Gp(m(x),m(x,x")) (19)

Then, we proceed to the posterior distribution and subsequently employ the expected improvement
as the acquisition function. The formula for expected improvement is as follows:

et (x) = E[ max(0, f (x) - F (x)) (20)
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Moreover, we recognise that the outputs of numerous machine learning classification models—
such as Support Vector Machines (SVM), boosting methods, and neural networks—do not represent
true probabilities, but rather resemble a “confidence score” or “rating”. These scores may tend to
cluster within a specific range, necessitating their mapping to genuine probabilistic meaning.

Platt scaling is a remarkably simple yet effective probability calibration method. It employs a
logistic regression model to learn how to transform raw prediction scores s into calibrated
probabilities p. Its model is a parameterised sigmoid function:

1

P(y=HS)=0(AS+B):WAS+B)

(21)

The results of the model run are shown in Figures 7 and 8:
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Fig. 8 Training and validation loss

It is evident that the loss function value has been significantly reduced, with the model exhibiting
a downward trend. This indicates that the model has successfully minimised training error during the
learning process and effectively minimised the objective function, demonstrating a favourable
learning trajectory. Through Platt Scaling probability calibration, we obtained calibrated probabilities
and found the calibration to be quite satisfactory. Following calibration, we derived p”.

If p* > _hi, we can infer female foetal abnormality.

Ifn_lo <p”<m_hi, we infer the female foetus is in the grey zone—that is, unable to be definitively
categorised as normal or abnormal.

If p* <m_lo — we can infer the female foetus is normal.

The threshold is determined by minimising the cost function R=c_FN £N+c_FP P whilst
constraining the grey zone proportion.

In the minimised cost function:

N (False Negative): the number of samples that are truly abnormal but predicted as normal by the
model. FP (False Positive): the number of samples that are truly normal but predicted as abnormal by
the model. ¢_FN and c_FP represent the cost incurred by each missed diagnosis or misdiagnosis.
Therefore, we seek an optimal solution to ensure no abnormal female foetus is overlooked. This also
indirectly validates the correctness of our model.
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We address this using MATLAB: For each pair (n_lo, m_hi), classify the p” value of every sample
in the validation set to obtain a decision outcome (normal, grey zone, abnormal). We then compute
the confusion matrix: disregarding all samples classified as grey zone (as they require further
examination and are not direct consequences of this decision), focusing solely on those with explicit
classifications. Through MATLAB calculations, we approximate the optimal solution, yielding the
following results: the optimal lower threshold & _lo = 0.01, the optimal upper threshold ©_hi = 0.02,
corresponding to a minimum cost R = 0.00 and a grey zone proportion = 0.00%. These findings are
illustrated in Figure 9.
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Fig. 9 Comparison of Predicted Probability and Calibrated Probability

The model's evaluation metrics are as follows:
Sensitivity: Recall = TP/(TP+FN)

Specificity: Specificity = TN /(TN +FP)
Accuracy: Accuracy = (TP+TN)/(TP+FP+TN+FN)
Calculated values: Sensitivity 91%, Specificity 82%, Accuracy 86%.

4. Summary

This paper constructs an integrated framework encompassing ‘correlation mining—component
modelling—timing optimisation—anomaly detection’, covering the entire process from modelling
male foetal concentration to identifying female foetal anomalies. The optimisation of detection timing
incorporates risk functions and Monte Carlo simulations, thereby avoiding the premature/delayed
detection bias inherent in reliance solely on theoretical thresholds. Through Spearman correlation
analysis, feature importance ranking, and risk stratification, the model outcomes are rendered more
clinically interpretable and actionable. By integrating multidimensional features including BMI, GC
content, gestational age, and target achievement rates, the approach better reflects real-world clinical
scenarios than single-factor BMI grouping. However, the present model exhibits certain limitations.
For instance, the 4% threshold for achieving target levels fails to account for variations across
sequencing platforms or geographical regions, thereby restricting its adaptability. Furthermore, K-
means clustering exhibits sensitivity to initial values, posing a risk of boundary drift that may
diminish clinical interpretability.
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